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Hydrodynamic stability of surfactant solutions 
heated from below 
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(Received 22 January 1971 and in revised form 9 September 1971) 

The interfacial hydrodynamics of pools of dilute binary solutions heated from 
below is examined using linear stability analysis. Results show that the stabiliz- 
ing effect of the solute can vary greatly with its interfacial properties, its con- 
centration, and the rate and mechanism of its transfer between the bulk phase 
and the surface. 

1. Introduction 
The linear hydrodynamic stability analysis of shallow liquid pools heated 

from below can be used as a tool for investigating the surface behaviour of dilute 
binary solutions in which the solute is surface active. 

The stability of pure liquid pools heated from below, and subject to surface 
tension variations, was analysed first by Pearson (1958), while Nield (1964) 
f i s t  considered the stability of such a pool subject to both surface tension 
variations and adverse density stratification. The predicted stability criteria 
of Nield’s linear analysis have recently been observed experimentally by Palmer 
& Berg (1971) using a modification of the Schmidt-Milverton technique (Schmidt 
& Milverton 1935), in which the maximum supportable temperature gradient is 
identified by the sudden change of slope in the plot of heat flux versus tem- 
perature drop across the pool. 

Berg & Acrivos (1965) extended Pearson’s analysis to consider the effect of 
insoluble surfactants, and predicted that even trace amounts of such materials 
would exert an extreme stabilizing influence on the system. The stabilization 
depends primarily upon the slowness with which monolayer concentration 
variations can be diminished by surface diffusion, and only secondarily upon 
surface viscosity. The sustained non-uniformities in surface monolayer con- 
centration maintain surface tension gradients opposing the disturbing forces. 

The stability analysis presented here, of pools containing small amounts of 
dissolved surfactant, involves not only the rheological and transport properties 
of the monolayer itself, but also the rate and mechanism (adsorption-desorption) 
of interchange of surfactant between the surface and the adjacent bulk phases. 
All of this is necessary because, as described in more detail below, surface con- 
centration following a disturbance may be restored to uniformity not only 
through surface transport, but also through interchange with the adjacent 
bulk phases. The analysis delineates the relative importance of the system 
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properties in stabilizing the system, and embraces the insoluble monolayer 
analysis as a limiting case. It also reveals some coupling effects between the 
different properties determining the system’s stability. 

Stability analysis is advantageous in the study of the nature of fluid interfaces 
for two reasons. First, it provides a situation which can be described in terms of 
linearized equations and boundary conditions. Second, the results of the analysis 
are amenable to experimental examination using the adaptation of the Schmidt- 
Milverton technique, which has already proved successful in the quantitative 
verification of the predicted stability criteria for pure liquid pools heated from 
below. Subcritical instabilities (i.e. convection induced by finite amplitude 
disturbances) thus appear to have been eliminated in the proposed experimental 
technique. 

The object of the present paper is to perform the linear hydrodynamic stability 
analysis of a shallow liquid pool heated from below and consisting of a dilute 
non-volatile solution of a surface active solute. The analysis is developed first 
for the case in which only surface tension variations lead to instability (valid for 
very shallow pools), and second for the case in which both surface tension and 
buoyancy effects are operative. A later paper will present experimental results 
for a number of cases suggested by this analysis. 

2. Quiescent system 
The system analysed is a binary solution pool infinite in lateral extent and 

bounded on the bottom by a flat solid surface and on the top by an inviscid gas. 
The upper surface is assumed to remain flat, as in the analyses of Pearson (1958) 
and Nield (1964). This assumption was relaxed in similar studies by Scriven & 
Sternling (1964) and Smith (1966)) whose results indicate that the effects of the 
surface deformability on system stability are generally confined to disturbances 
of very large wavelength. 

The pool is heated from below and cooled from above to maintain a steady one- 
dimensional heat flux through the fluid. The solution is dilute and non-volatile, 
and all its physical properties except density and surface tension are assumed 
constant. Density, as it appears in the gravity term of the momentum equation, 
varies linearly with temperature, and surface tension varies with both tempera- 
ture and solute concentration. 

Prior to the onset of convection, the concentration of the surface active solute 
is uniform throughout the depth of the pool. Its equilibrium concentration at the 
free surface, however, is greater (possibly much greater) than it is in the bulk 
liquid. The surface concentration of the solute is usually expressed in terms of its 
‘relative adsorption ’ r2, with units of moIes area-l, and defined as 

where 4, cg, c:, ci are molar concentrations of solvent 1 and solute 2 in the bulk 
gas and liquid phases, and F2 and PI are the ‘surface excesses’ of solute and sol- 
vent, respectively (cf. Defay et al. 1966, p. 26). The surface excesses are reckoned 
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by comparing the actual system with the model in which the phases are assumed 
uniform in composition up to an arbitrarily located 'dividing surface ' representa- 
tive of the true interface. While the magnitude of the individual surface excesses 
depends on the location of the dividing surface, the relative adsorptions are 
invariant with respect to its location. For dilute, non-volatile solutions, I?z,l is 
well approximated by rz, and the actual concentration of solute in the surface 
layer (of thickness 6) is given (dropping the subscript) by 

c, = + rp, 
where c is the bulk concentration of solute. &is known, from optical measurements, 
to be of the order of a few molecular diameters. Thus, even for rather weak 
surface active agents, c < I?/&, so that c, N I?/&. The surface concentration of 
solute may then be expressed in terms of I? for the type of system under study 
here. For highly concentrated surfactant solutions, more general expressions 
for surface concentration would be required, while, for non-surface active 
solutes, the situation reduces to the one analysed by Pearson (1958) or Nield 
(1964). 

3. Stabilizing mechanism: three special cases 
When the system, as described above, is perturbed, it responds according to 

the equations of motion, energy and diffusion. Depeding on the system proper- 
ties, this response may carry it still further from the original unperturbed state. 
A disturbance in the form of a local surface dilation, for example, will bring liquid 
from the interior of the pool to the point of local dilation, increasing the surface 
temperature, and hence reducing the surface tension at that point. The surface 
tension gradient so generated tends to increase the original surface dilation, so 
that the disturbance is self-amplifying. The presence of an adsorbed solute, 
however, may greatly inhibit the auto-amplification of such disturbances. Local 
surface dilation will locally decrease the surface solute concentration I?, and thus 
will establish a surface tension gradient opposite in sign to that produced by 
the upward flow of warm liquid to the surface. The effectiveness of the solute in 
stabilizing the system depends on the magnitude of I?, the sensitivity of surface 
tension to I?, and the ability of the surface concentration gradient to sustain 
itself against erosion by surface diffusion and bulk phase transport. One may 
define three special cases based upon the controlling mechanism for the diminu- 
tion of surface concentration gradients : (i) bulk diffusion controlled, (ii) adsorp- 
tion-desorption rate controlled, and (iii) surface diffusion controlled. In  cases (i) 
and (ii) above, surface migration is accomplished primarily through transport 
in the bulk phases, while in case (iii) it  is accomplished by surface diffusion of a 
monolayer, which is either insoluble in the substrate or kinetically blocked from 
entering it. In  addition to the effectiveness and mechanism of surface solute 
redistribution, the stability of the system also depends on the rheological proper- 
ties of the surface. 

25-2 
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4. Mathematical formulation 
The linear stability is analysed in the usual manner by imparting to the quies- 

cent system a small disturbance, exponential in time and periodic in the plan 
form spatial variables, but of arbitrary wavelength. The disturbance is made to 
obey the conservation equations of momentum and energy, as in the analysis of 
Nield (1964) and others, and, in addition, it must satisfy the equation of mass 
conservation for the solute. 

The heart of the present analysis lies in the specification of the boundary con- 
ditions for the upper free surface of the pool. To describe the spatial distribution 
of the surface excess of the solute r, a surface material balance is needed: 

ar 
- + V I I . ( ~ u s - D s V I I I ' )  =j at z = d,  
at 

a a  
ax ay 

where V,, = i - + j - , x and y are the horizontal co-ordinates, z the vertical 

co-ordinate, d the pool depth, t the time, us the surface velocity, D, the surface 
diffusion coefficient, and j the mass flux from the adjacent bulk phases to the 
interface. Since the solute is assumed to be non-volatile, j is just the net rate 
of solute transfer from the liquid subphase, and in general 

where Db is the diffusivity of solute in the bulk liquid phase. Mass transfer between 
subphase and surface, as stated earlier ( § § 1 , 3 ) ,  may also be expressed as an 
adsorption-desorption process, yielding a second boundary condition. For highly 
dilute solutions, solute-solute interactions are negligible, and the adsorption 
and desorption rates are given by first-order expressions. Thus, 

j = - Db acpz  at z = d, 

j = -D,ac/az = k , c - k - , r  a t  z = d ,  P a )  
where k, and k-, are the rate constants for adsorption and desorption. 

In  the bulk diffusion controlled case, the adsorption and desorption rates are 
large with respect to the diffusion term, and the surface excess of solute is essen- 
tially in local equilibrium with the solute in the adjacent subphase, i.e. 

k1 

k-1 
-c-I '-O at  z = d ,  

where the ratio k,/k-, is the distribution equilibrium constant between surface 
and subphase. In  the adsorption-desorption rate controlled case, the rates of 
adsorption and desorption are small and unequal, so that the surface excess of 
solute is not in equilibrium with the adjacent subphase solute concentration. 

In  the surface diffusion controlled case, the solute is either insoluble, so that c 
and ac/az are zero, or it is kinetically blocked from entering or leaving the surface, 
so that k, and k-, are essentially zero. In either case ( 2 a )  simplifies to j = 0, 
indicating that no mass transfer takes place between the surface and the subphase. 

A third boundary condition derives from a balance of the tangential forces at  
the free surface. The surface divergence of the shear stress balance is 
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where w is the vertical component of velocity, T is the temperature, and p, p8 
and are the bulk viscosity, surface shear viscosity and surface tension of the 
solution, respectively. Among the various rheological properties that might be 
formally assigned to the interface, only surface shear viscosity is considered in the 
present analysis. 

The thermal boundary condition at the free surface is 

- kaT/az = h(T - T,) at z = d, (4a) 

where k is the thermal conductivity of the liquid, h the heat transfer coefficient 
in the air near the surface, and T, the constant ambient temperature, 

Finally, the assumption of a flat upper surface requires that the vertical com- 
ponent of velocity be zero : 

At the solid bottom boundary there is no slip, no vertical component of velocity, 
and no solute mass transfer. Thus, 

w = O  at z = d .  ( 5 4  

Assuming that the bottom surface is a perfect heat conductor, 

T = const. at  z = 0. (7a)  

The momentum, energy and diffusion equations together with boundary con- 
ditions ( la) - (7a)  completely specify the behaviour of the system and are first 
solved for the quiescent state. The system variables are then displaced infinitesi- 
mally in the usual way by perturbations of the form 

P(X, Y, z , t )  = P*{hf}f(% y^) m, 
where h is the time growth constant, P* is a scale factor, and p(2) is the non- 
dimensionalized z dependent factor of the disturbance. Since F is a function of 
5, y and t only, its x dependent factor is just unity. 

After separation of variables, non-dimensionalization and linearization, the 
equations of momentum, energy and diffu,' sion are 

h(D2 - a2) 8 = ( 0 2 -  a2)2t2 + a 2 R f ,  (8) 

APrP = (D2-a2)T-&. (9) 

ASce = ( D 2 - ~ ' )  2, (10) 

h 

where D 5 a/&, 8, !? and ĉ  are the z dependent factors of the non-dimensional- 
ized vertical velocity component, temperature, and bulk solute concentration 
perturbations, respectively, and a is the wavenumber. The variables z ,  w, c ,  t ,  
T and I? are non-dimensionalized by dividing them by d, D,(ac/aI'),, F0(ac/aI'),, 
d2v--1, - ATdDb(ac/aF),rl and - I?,, respectively, where v and K are the kine- 
matic viscosity and thermal diffusivity of the fluid, AT is the steady-state tem- 
perature difference between the bottom and top surfaces, and the zero subscript 
indicates quiescent state values of the physical parameters. 
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Similarly, the boundary conditions are rewritten as follows. At ’2 = 1, 

ANss + DO + $NsD = DC, (1 b )  

-NA,Dĉ  = C+1, (2 b)  

D20 + a2N, DO - LX~N~!?  - a2NEL = 0, (3 b)  

D? + B ~ P  = 0, (4b) 

8 = 0, (5 b)  

( 6 b ,  7b)  
h 

and, at  2 = 0, DO = = DC = T = 0. 

The dimensionless groups in the above equations are defined below : 

Marangoni number 

Rayleigh number 

Elasticity number 

Adsorption number 

Surface diffusion number 

acr (AT)d  
M a  = -(z) -, 

0 KP 

ag(AT)d3 R E  > 
KV 

Surface viscosity number 

Biot number Bi = hd/k,  

Prandtl number Pr f v / K ,  

Nv = ,uS/pd, 

Schmidt number X C  V/Db, 

Surface Schmidt number 

where ?i is the coefficient of thermal expansion of the fluid, and g is the gravita- 
tional acceleration. In  the above equations, Ic-, has been replaced by its equivalent, 
k,(X’/ac); l .  

The condition of marginal stability is sought, and it requires that the real part 
of the time growth constant h be zero. Equations (8)-( 10) are first solved for the 
special case of pure surface tension driven instability, and secondly for the more 
general case in which both surface tension and buoyancy forces are present to 
induce convection. 

5. Solution for surface tension driven instability 
To consider instability induced by surface forces alone, the Rayleigh number is 

set equal to zero. The general solution to (8)-(10) may then be written down 
immediately, and the coefficients evaluated from (1 b) ,  ( 2 b ) ,  (4b ) - (7b ) .  Sub- 
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stitution of the solution into (3  b )  then yields the characteristic equation relating 
M a  to a, I m h  (the imaginary part of the growth constant), and the other 
dimensionless groups a t  the condition of marginal stability. This characteristic 
equation for the Marangoni number in the absence of buoyancy effects (Ma*) is 

Ma* = (q  cosh q + Bi sinh q)  (i Im AD, + D, fs)/D3 (Im h + 0); ( 1 l a )  

Ma* 

with 

] [2-~sinh2a+(a2-sinh2a)FS ( I m h  = 0); 

(116) 
1 a cosh a + Bi sinh a 

a3 cosh a - sinh3 a 
= 4a2 

D, = (a sinh q cosh 01 - q sinh a cosh q)/a2, 
D, = 2ya(coshqcosha- 1)-(r2+a2) (sinhqsinha), 

D, = qa(2Pr- l)sinhq(coshqcosha- l ) -[Pr(r2+a2)-a2] 

x (sinh q sinh q sinh a)  + q(as sinh q - 7 sinh a)  

+ q cosh q(q sinh a Gosh 7 - a sinh q cosh a), 
where 

q = (a2 + i I m  A)*, q = (a2 + i Im h Pr)9, and s = (a2 + i I m  h Sc)*. 

Equation (1 1 a)  can be written simply as 

Ma*(&, I m  A, Nj)  = Re Ma* + i I m  Ma*, 

where Nj represents all the dimensionless groups describing the system. Physic- 
ally, of course, the Marangoni number must be a real number so that the only 
admissible values of Im h are those for which the imaginary part of the Maran- 
goni number, Im Ma*, equals zero. When only the value Im h = 0 makes I m  Ma* 
vanish, the principle of exchange of stabilities is said t o  hold, and oscillatory 
instability will not occur. Such is the case for the pure liquid pool heated from be- 
low (Vidal & Acrivos 1966), but in the more general case treated here, non-zero 
values of I m  h do exist for which I m  Ma* equals zero. For a given binary solution 
system, there is one non-zero value of Im A ,  a t  each wavenumber a, for which 
I m X a *  equals zero. At these values of I m h  and a, ReMa* can be calculated 
and is equal to  the oscillatory critical Marangoni number for the system a t  the 
wavenumber a. Thus, a single curve of Ma* versus a can be generated repre- 
senting the neutral oscillatory stability limit for the system. 

Similarly, the curve of Ma* versus a for Im h = 0 can be generated represent- 
ing the locus of all neutral stationary states of the system. Each curve has a 
minimum value of Ma*. The smaller of the two minima is the actual stability 
limit for the system. If it is the value of Ma* corresponding to a non-zero value of 
I m  A, then convection will be initiated through an oscillatory mode characterized 
by a period growth and decay of the disturbances in the fluid. 

The oscillatory criticalMarangoni number decreases as the Prandtl number and 
Biot number decrease and as the Schmidt number and NHS increase. Increasing 
adsorption barrier, however, reduces the possibility of oscillatory instability, 
because it masks the effect of the Schmidt number, as can be deduced from the 
expression for f, in (1 1 a) .  
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The degree of stability imparted to the system by the solute depends on the 
magnitude off,, which embodies in it all the dimensionless groups pertaining to 
the solute. In  general, however, Nv may be neglected since, from calculations 
using reasonable values for the physical properties, its effect on Ma" is of second- 
ary importance compared to the other dimensionless groups in the analysis. 

Therefore, the most important dimensionless groups to consider are NEL, 
NsD, NAD and, in the case of oscillatory modes of instability, Nss, Pr and Sc. 
The elasticity number NEL represents the effectiveness of the solute in generating 
surface restoring forces. The surface diffusion number N,, relates the importance 
of surface diffusion to bulk diffusion as a mechanism for lateral mass transfer. 
The adsorption number NaD is the ratio of the effectiveness of bulk diffusion to 
adsorption in transferring mass to the surface. It can be viewed as a measure of 
the adsorption barrier; the larger the value of NAD, the greater is the adsorption 
barrier. 

6. Special cases in surface tension driven instability 
6.1. Bulk d ~ ~ u ~ ~ o n  control 

The most common special case of the general solution is the situation where there 
is no adsorption barrier to mass transfer between the surface and the subsurface 
layer (i.e. NAD + 0) .  This means that the surface concentration of the solute is 
always in equilibrium with the solute concentration just below the surface. Thus, 
the rate of mass transfer into the surface is controlled by the rate at  which the 
solute can diffuse from the bulk to the subsurface layer. 

For low Prandtl number fluids, like water solutions, the mode of instability 
is always oscillatory, and the critical oscillatory Marangoni number is a weak 
function of NSs and Sc. For fluids whose Prandtl number is of the order of 103 or 
greater, however, the stationary mode of instability predominates. Regardless 
of Prandtl number, surface diffusion cannot effect a significant change in the 
critical Marangoni number unless D, is at  least 100 times as large as the bulk 
diffusion coefficient. This is not likely to be the case (cf. Sakata & Berg 1969). 
Therefore, for a given Prandtl number, the critical Marangoni number for the 
bulk diffusion controlled system is a function of the elasticity number NEL only. 

Curves (a )  and ( b )  in figure 1 illustrate the large increase in the critical Maran- 
goni number with increasing elasticity number for the diffusion controlled 
system. Curve (a) represents the oscillatory stability limit for a solution whose 
Prandtl number is 10 (Sc = lo3 and N,, = 0- l ) ,  while curve (b )  represents the 
stationary stability limit that is the true stability limit for fluids whose Prandtl 
number is of the order of lo3 or larger. Since NEL is proportional to both r0 and 
(alr/ac),, an increase in either solute concentration or (alr/ac),, by a change of 
solute, will increase the stability limit for the system. For instance, from curve (a)  
we find that a 3 x molar solution of n-butanol in water (alrjac = 5 x 106dyne 
cmzmole-l), or a lop8 molar solution of decanol in water (acr/ac = 3 x 108dyne 
ern2 mole-I), will have a stability limit which is an order of magnitude higher than 
the stability limit for pure water. 



Stability of surfactant solutions 393 

6.2. Adsorption-desorption rate control 

Several cases have been reported in which adsorption or desorption of surface 
active solutes a t  fluid interfaces is very slow (cf. England & Berg 1971). Thus, 
the adsorption rate may be the controlling factor in the transfer of solute be- 
tween the surface and the bulk phase. Increasing the adsorption barrier will 

105 

104 

* 
$ 103 

10' 

10 
10-2 10-1 1 .0 10 10' 103  

a a  r, 
ATEL = - (z),a 

FIGURE I. Representative stability limits of surfactant solutions in which buoyancy forces 
are absent. Surface diffusion and Biot numbers are zero. ( a )  Oscillatory stability limit for 
asysteminwhichPr = 10,Sc = 10s,Nss = O . l , a n d N ~ ~  = 0. ( b ) ,  (c), (d )  Stationarystability 
limits for systems in which N A D  = 0, 10, and 100, respectively. 

reduce the rate at  which surface concentration gradients can be diminished and 
therefore will increase the stability limit of the system. Curves (c)  and ( d )  of 
figure 1 illustrate the increase in the stationary stability limit with increasing 
NAD at constant values of NEL. 

The adsorption rate begins to have a significant effect on the stability of the 
system when Nan is greater than 0.01, corresponding to an adsorption rate 
constant less than cm sec-l. This means that the stabilizing effect of the 
adsorption barrier in a system such as 1,5pentanediol in water (for which k, - 10-5 
cm sec-l) should be easily detected experimentally. When NaD is greater than 
100, mass transfer is entirely adsorption controlled; the solute concentration in 
the bulk is effectively uniform throughout the pool, and bulk diffusion is no 
longer important in the stabilizing mechanism. 

As in the special case of the bulk diffusion controlled system, high Prandtl 
number fluids do not exhibit osciIIatory instability for physically reasonable 
values of Nxx. However, for the low Prandtl number fluids, prediction of the mode 
of instability is more complicated for the adsorption controlled system than 
it is for the diffusion controlled system. Increasing the adsorption number 
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reduces the possibility of oscillatory instability, because it minimizes the effect 
of the Schmidt number. However, increasing NAD enhances the effect ofNSD and 
Nss on the critical Marangoni number. 

While in the diffusion controlled system NH, and Nss have little effect on the 
mode of instability or the stability limit, the combination of NSD and N,, for a 
given value of N,, in the adsorption controlled system is significant for deter- 
mining whether the instability will be oscillatory or stationary and, thus, what 
the critical Marangoni number will be. Figure 2 illustrates the combinations of 
NAD, N,, and N,, for which the stationary mode of instability is preferred for a 

1 0 3  

10' 

9 

i 
10 

1 .o 

10 - '  
1 0 - 7  l o -$  10-3 10-1 10 

N s  D 

FIGURE 2. The boundary between the regions of oscillatory and stationary instability as a 
function of N A D ,  N ~ D  and Nss  for a system with P = 10, Sc = lo3 and Bi = 0. 

fluid whose Prandtl number is 10 and Schmidt number is lo3. For a given value 
of N,,, for instance, all combinations of NAD and NsD to the right of the N,, 
curve will give stationary instability, and, to the left, oscillatory instability. For 
example, if Nss = 0.6 and NAD = 100, all values of N,, > 0.1 will yield stationary 
stability limits, and all values of NsD < 0.1 will yield oscillatory stability limits. 

In the cases where stationary instability predominates, Nss plays no role in 
determining the stability criteria. The relative importance of surface diffusion 
to adsorption in determining the stationary stability limit is readily seen in 
figure 3, in which the critical stationary Marangoni number for NEL = 100 is 
plotted versus the adsorption number for three different values of Ns,. There 
is a marked increase in Ma* with increasing adsorption barrier, until surface 
diffusion takes over as the dominant factor in diminishing surface concentration 
gradients. Because of the coeEcients of surface diffusion and bulk diffusion are 
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usually about the same order of magnitude, we have N,, - ( l / d )  (arlac),,. This 
means that a highly surface active substance like decanol, for which 

(ar/ac),, = 0.0125 cm 

at low concentrations, would have to exhibit an abnormally large adsorption 
barrier (i.e. k, - lo-' cm see-l), if surface diffusion is to have a significant effect on 
the criteria for stability. 

NEL= 10' 

107 - 

ivsU= 10-3 
10" - 

* 
S 105 - 

Ns"= lo-' 
1 0 4  - 

1 1 I I I I 

10-1 '1.0 10' 102 103 10' 

N A D  
FIGURE 3. Graph illustrating the effect of adsorption barrier and surface diffusion on the 

stationary stability liniit in the absence of buoyancy forces at  NEL = 100 and Bi = 0. 

103 I 
10-2 

N A D  Ns D 

102 10-6 
10-1 

10 10-3 

104 

10-3 
10-6 

10-1 

10-3 

10-5 

Nss  
10-2 

10-2 
1-0 

10 

10-2 
10-2 

1.0 
10 

10-2 
10-1 
10 

10-2 
10-1 
10 

103 

103 

103 

10-3 

Ma* at N E L  = 100 

22 300 

22 300 
8 920 

996 

206 000 
206 000 

8 900 
995 

866 000 
86 800 

991 

866 000 
86 800 

991 

89.3 

89.3 

89.2 

89.2 

TABLE 1. Values of the oscillatory critical Marangoni number for 
N E L  = 100 and various values of Nao,  N ~ D  and Nss  

- 
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In  the cases where oscillatory instability dominates, N,, as well as NSD, NA, 
and NEL is important in determining the stability limit for the system. Table 1 
is a brief list of the oscillatory critical Marangoni number at  NEL = 100 for 
various values of NAD, N,, and N,,, and it illustrates the trend of decreasing 
Ma* with increasing Nss and NA, as well as the unimportance of NsD and NA, 
for comparatively large values of Nss. 

6.3. Xurface diffusion control 

As the adsorption barrier becomes infinite, or as the solubility of the solute 
becomes negligibly small, the general solution (11) reduces to the case for the 
insoluble surfactant spread on a liquid pool. The special solution for I m h  = 0 

10-1 - 

10-2 - 

10-3 - 

2 10-4 

3 
g l o - 5 -  

- 

9 

10-6- 

10 ? -  

1 0 - 8  
1 0 - 6  10-5 10--4 10-3 10-2 10-1 1.0 

NSSINEL 

FIGURE 4. The boundary between the regions of oscillatory and stationary instability 
for a liquid pool with an insoluble surfactant spread on the surface. Bi = 0. 

is identical to that of Berg & Acrivos (1965). It is the solution for Imh  + 0 
that is new, and of particular interest. The present results show that oscillatory 
instability does indeed exist in the insoluble surfactant case. 

As NAD approaches infinity, the number of pertinent dimensionless groups 
required to describe the system is reduced to three: Pr, NsD/NEL and Nss/NEL. 
Thus, the boundary between oscillatory and stationary states can be repre- 
sented graphically, as shown in figure 4. All combinations of NsD/NEL and 
Nss/NEL that lie above the curve corresponding to the Prandtl number for the 
liquid represent system configurations for which the stationary mode of insta- 
bility will dominate, and all combinations below the appropriate curve represent 
configurations for which oscillatory instability, will be initiated. 

If the mode of instability is stationary, the stability limit for the liquid pool 
with an insoluble surfactant on its surface depends solely on the value of 
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NSD/NEL, as shown by Berg & Acrivos. When oscillatory modes of instability 
dominate in the insoluble surfactant case, however, the effect of surface diffusion 
on the stability limit becomes negligible, because, in the relatively short period 
of oscillation, surface diffusion does not have time to alter the surface concentra- 
tion gradient. The important parameter in this case is NSS/NEL. Figure 5 shows 
the stability limit Ma* versus the modified surface diffusion number NSDINEL. 
The solid line is the stationary stability limit presented by Berg & Acrivos, while 
the dashed curves are the oscillatory stability limits for three values of N,,/N,, 
for a liquid pool whose Prandtl number is 10. 

." 
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N s D / N m  

FIGURE 5. The stability limit of insoluble surfactant systems with buoyancy forces absent. 
, stationary stability limit; ----, oscillatory limits for specific values of Nss/NEL, 

with Pr = 10. Bi = 0 for all curves. 

For most physically realizable insoluble surfactant systems, the preferred 
mode of instability will be oscillatory. Consider, for example, a 'liquid expanded ' 
monolayer of oleic acid on a 1 mm deep pool of water at  20 "C. For this system, 
(a(r /X ' ) ,  = - 5.5 x 1O1O dynes cm mole-1 at I? = 3.7 x 10Wo moles cm-2. There- 
fore,NSD/NEL N 5 x 10-8andNSs/NEL = 5 x lo". Fromfigure4, itis evident that 
this system will exhibit oscillatory instability. From figure 5 it is seen, by extra- 
polation, that, although the stationary stability limit yields a value of Ma* of 
nearly 3 x 108, the actual minimum stability limit (due to oscillatory instability) 
puts Ma* at 2 x lo6. 

Whether or not such instability is observed experimentally, however, will 
depend on the period of oscillation of the disturbance associated with the critical 
Marangoni number. If the period of oscillation is extremely long, for instance, 
it  may never be observed during the course of an experiment. The period of oscilla- 
tion r is given by the value of Im h associated with the critical oscillatory Maran- 
goni number for the system: = 2nd2/~m A,,. 
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For the insoluble surfactant case, the modified surface diffusion number 
NBDINEL has little effect on r in the region where oscillatory instability dominates. 
Rather r ,  like the oscillatory stability limit, is a strong function of Nss~NEL only. 
For a 1 mm deep pool of a 1 cs. fluid, r varies from 6 to 30 sec as Nss/NEL varies 
from l o 4  to 10. Thus, as a monolayer becomes more condensed (i.e. more highly 
concentrated), the initial period of oscillation becomes shorter. 

In  particular, for oleic acid spread on water at  a concentration of P = 3.7 x 10-10 
molescm-2, the initial period of the oscillatory disturbance is predicted to be 
10sec. This is the period of the infinitesimal disturbance at  the point of neutral 
stability, and may not be the period observed experimentally after the distur- 
bance has grown to a detectable amplitude. 

7. General solution including buoyancy effects 
The addition of the destabilizing buoyancy force to the problem would not 

appear to add any additional potential for oscillatory instability in the system 
because of the comparatively weak dependence of Ghe buoyancy stability limit 
on the upper surface boundary condition and because the destabilizing forces of 
buoyancy and surface tension are so tightly coupled in the pure liquid pool 
(Nield 1964). Thus, it is expected that the true stability limit will be the station- 
ary stability limit for larger Prandtl number fluids even when both surface forces 
and density stratification act in concert to initiate convection in the binary 
solution pool. 

The solution of (8)-( 10) for an arbitrary R is substantially simpler if we assume 
that Imh  as well as Reh equals zero. Therefore, we will limit ourselves to the 
consideration of large Prandtl number fluids for which Im h = 0 is expected to 
coincide with the true stability limit for the system. 

The solution is obtained using Fourier series expansions in a technique paral- 
leling Nield’s analysis of the pure liquid pool. The solution for the critical station- 
ary Marangoni number is 

M a =  [ ] ( R $ + g P a  s4 2 S 3  + Bi + 11 
x1x4-x2s5 

where 

pnW( - 1)” s5=ng1 P3--2R ’ 

p = n27f+a2, 

and Fs = Nv + NE,/[a2NsD + alcoth a + aN,,)]. 
The effect of the solute on the critical Rayleigh number in the absence of 

surface tension forces is determined by setting M a  = 0 in (12). Figure 6 illustrates 
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the effect of elasticity number NEL on the critical Rayleigh number for various 
values of the adsorption number NAD. The transition of the upper surface from 
a hydrodynamically free surface (R* = 669) to a hydrodynamically fixed sur- 
fact (R* = 1296) with increasing elasticity number, and increasing adsorption 
barrier, is seen to be abrupt. 

t 
N E L  

FIGURE 6. The boundary between stability and buoyancy induced convection 
for surfactant solution pools with NSD and Bi = 0. 

The results for pure buoyancy instability, together with those obtained from 
(1 1 b)  for Ma*, are used to normalize the values of R and M a  in the presentation 
of the combined solution (12). Results are presented for the three special cases 
previously set forth: the bulk diffusion controlled system, the adsorption con- 
trolled system, and the surface diffusion controlled system. Regardless of which 
case obtains in a given situation, varying the Biot number between zero and 
infinity is found to have only a very small effect on the location of the stability 
curves. Results are thus shown only for the case of Bi equal to zero. 

Figure 7 shows the normalized critical Marangoni number versus the normal- 
ized Rayleigh number for the full range of elasticity numbers for the system 
in which the rate of mass transfer into the surface is bulk diffusion controlled. 
There is strong coupling between the two destabilizing mechanisms (indicated 
by the almost 45" line) over the whole range of NEL from zero to infinity. In  this 
case, as in the pure liquid pool, the destabilizing surface forces and buoyancy 
forces almost completely reinforce one another t o  cause instability. 

Imposition of an absorption barrier to mass transfer between the surface 
and the subsurface layer, however, tends to break down the tight coupling 
between mechanisms. Figure 8 illustrates, for the adsorption controlled system, 
that there is no longer tight coupling between surface tension and buoyancy effects 
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over the full range of values of NEL. This lack of interaction between the two 
destabilizing mechanisms coincides with a sizeable difference in preferred wave- 
number a, for the case of pure surface tension driven and pure buoyancy driven 
instability in an adsorption controlled system. In the former case, the preferred 
wavenumber is of the order of 0.5, as compared with approximately 2.5 for the 
latter. 
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FIGURE 7 .  The normalized critical Marangoni number us. the normalized critical Rayleigh 
number for the surfactant solution pool with no adsorption barrier to mass transfer into the 
surface. Bi = 0 and N S D  = -+ 0. At N S D  = 10-1 the coupling is even tighter, i.e. the 
N E L  = 00 curve is even closer to the NEL = 0 curve. 
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FIGURE 8. The normalized critical Marangoni number us. the normalized critical Rayleigh 
number for the soluble surfactant system in which there is a noticeable absorption barrier 
to mass transfer into the surface. N A D  = 100, Bi = N S D  = 0. 



Stability of surfactant solutions 401 

The lack of interaction between mechanisms increases with increasing NAB 
for a constant value of NEL until mass transfer between the surface and the sub- 
surface layer becomes so hindered that surface diffusion takes over as the domi- 
nant mechanism for diminishing surface concentration gradients. At this point, 
the tight coupling abruptly returns. The transition from tight coupling to loose 
coupling to tight coupling with increasing AT,, is illustrated in figure 9. Figure 10 
illustrates that the tight coupling between mechanisms has again returned over 
the full range of elasticity numbers and surface diffusion numbers for the case of 
the insoluble surfactant. 

0.6 

FIGURE 9. Illustration of how decoupling between the two destabilizing mechanisms occurs 
only when adsorption controls the rate of lateral mass transfer. R/R* = 0-5, N E L  = 1.0 
and Bi = 0. 
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FIGURE 10. The normalized critical Marangoni number ws. the normalized 
critical Rayleigh number for the insoluble surfactant system. Bi = 0. 
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8. Conclusion 
The present theoretical investigation of the stability of shallow pools of dilute 

surfactant solutions heated from below has demonstrated that such systems are 
apt tools for the experimental investigation of interfacial hydrodynamics. The 
calculated stability results have revealed that the solute in the liquid pool need 
be but slightly surface active to  have a marked effect on the hydrodynamic 
behaviour of the system. The stability limit has been shown to be extremeIy 
sensitive not only to  the amount of surface active material in the surface and to 
the magnitude of its effect on surface tension, but also to the rate and mechanism 
of its lateral transport. The more effectively the induced surface concentration 
gradients a,re sustained with time, the greater will be the stabilizing effect of 
the solute. 
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